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Abstract 

Using aerial images from the US Department of Agriculture National Agriculture Imagery Program and the US 
Geological Survey National Hydrology Dataset, we estimated 577 654 farm ponds with surface areas from 0.005 to 1 
ha in a 229 489 km2 region of the southeastern Great Plains (2.52 ponds/km2). Ponds with surface areas from 0.005 to 
0.1 ha were the numerically dominant size class in the study region. The distribution of farm pond sizes followed an 
inverse power law relationship. We estimated 376 209 permanent ponds and 201 445 temporary ponds were in our 
study area. The ratio of temporary to permanent ponds within a pond size class was inversely related to pond surface 
area; 47% of ponds with surface areas of 0.005–0.1 ha were temporary, whereas only 13% of ponds with surface areas 
of 0.91–1 ha were temporary. Because permanent and temporary farm ponds are abundant and have different physico-
chemical properties and ecological communities, assessments of regional biogeochemical processes and biodiversity in 
the Great Plains must consider both types of ecosystems.
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Introduction

Understanding the abundance and size distribution of 
lentic waterbodies is critical to assessing the role of these 
ecosystems in regional and global biogeochemical 
processes (Hanson et al. 2007, Downing 2009, 2010, 
Seekell et al. 2013). Historically, small lentic waterbodies 
with surface areas <0.1 km2 have either not been included 
(Meybeck 2003, Lehner and Döll 2004) or were under-
censused (Downing et al. 2006) in surveys of the 
abundance and surface area of lentic waterbodies. Several 
investigators recently estimated the abundance of small 
lentic waterbodies in global and continental-scale 
inventories and found that small waterbodies can occur at 
high densities and cover large surface areas (Smith et al. 
2002, Downing et al. 2006, McDonald et al. 2012), 
suggesting they may play an important role in biogeo-
chemical cycling and the maintenance of biodiversity. 

Understanding the role of small lentic waterbodies in 
the environment is complicated because some small 
waterbodies are not permanent but instead are temporary 

and periodically dry. Permanent and temporary lentic 
waterbodies have different ecological communities 
(Batzer and Wissinger 1996, Wellborn et al. 1996, 
Williams 1996) and potentially different roles in biogeo-
chemical cycling and the maintenance of biodiversity 
(Smith et al. 2002, Renwick et al. 2005, 2006, Drenner et 
al. 2009, Henderson et al. 2012). An important first step in 
assessing the role of permanent and temporary lentic 
waterbodies in the environment is to determine their 
abundance.

Farm ponds in the US Great Plains

The present study focuses on farm ponds in the US Great 
Plains, an extensive agricultural region where the con-
struction of farm ponds constitutes a fundamental trans-
formation of the hydrologic landscape (Smith et al. 2002, 
Renwick et al. 2005, 2006, Huggins et al. 2011, McDonald 
et al. 2012). Prior to settlement by Europeans, the Great 
Plains was a grassland with natural lotic and lentic 
waterbodies that included perennial and intermittent 
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streams, springs, oxbow lakes, playa lakes (primarily in 
West Texas and New Mexico), Nebraska Sandhill lakes 
(primarily in Nebraska), and prairie pothole lakes 
(primarily in Iowa, Minnesota, South Dakota, North 
Dakota, and Montana; Dodds et al. 2004, Huggins et al. 
2011). Over the past 150 years, most of this ecoregion has 
been converted to cropland, rangeland, or pastureland 
(Samson et al. 2004, USEPA 2013). Millions of farm 
ponds have been constructed in the Great Plains (Smith et 
al. 2002, Renwick et al. 2005, 2006, McDonald et al. 
2012, Chumchal and Drenner 2015) to capture runoff of 
surface water for a variety of uses, including water supply 
for livestock, sediment trapping and erosion control, and 
recreation (Renwick et al. 2005, 2006). The construction 
of farms ponds has resulted in the Great Plains having one 
of the highest densities of lentic waterbodies (McDonald 
et al. 2012) and highest shoreline densities in the 
contiguous United States (Winslow et al. 2014), and small 
farm ponds are now the dominant lentic ecosystem in the 
Great Plains (Huggins et al. 2011). The changes in 
hydrology have been particularly dramatic in the south-
eastern Great Plains (Smith et al. 2002, Renwick et al. 
2005, 2006), an area historically devoid of natural lentic 
ecosystems. Here we provide the first estimate of the 
abundance of farm ponds ≤1 ha and the number of 
permanent and temporary farm ponds as a function of 
pond surface area in the southeastern Great Plains.

Study area

Our study area was located in the southeastern portion of 
the Great Plains US Environmental Protection Agency 
(USEPA) level I ecoregion (http://www.epa.gov/wed/pages/
ecoregions/na_eco.htm), selected after examining the 
geographic distribution of ponds in the southern portion of 
the Great Plains (Fig. 1a). Using the United States 
Geological Survey (USGS) High-Resolution National 
Hydrology Dataset (NHD) sub-database “NHDWater-
body” (http://nhd.usgs.gov/), we determined that the 
number of waterbodies in the southern Great Plains varied 
from west to east and were greatest near the eastern border 
of the ecoregion (Fig. 1a). For our study area, we selected 
a 229 489 km2 region between 31–37°N and 96–100°W 
(Fig. 1b) where farm ponds are abundant lentic ecosystems 
(Fig. 1c).

Methods

Overview

We used the NHD, the largest database of waterbodies in 
the United States, to estimate farm pond abundance. The 
NHD was developed from USGS topographic maps, and 
in some areas of Texas and Oklahoma the NHD source 
data were last updated in 1978 and therefore may not 

Fig. 1. (a) Density of lentic waterbodies ≤10 ha in the US Great Plains, (b) density of lentic waterbodies ≤10 ha in our study area, and (c) ponds 
in one-quarter quadrangle in Throckmorton County, TX. The boundaries of our study area within the Great Plains are indicated by a checkered 
black border. Lentic waterbody data are from the National Hydrology Dataset.
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images (Table 1, column C). The corrected number of 
ponds in the 18 quarter quadrangles for each size category 
were documented (Table 1, column E). The ratio of the 
corrected number of ponds in the NHD to the number of 
ponds in the NHD for the 18 quarter quadrangles is a 
measure of net error (Table 1, column F). In each size 
category, some ponds observed in the aerial images were 
missing from the NHD, and some ponds in the NHD were 
not observed in the aerial images. The net error (estimated 
as a ratio) was relatively small for the smallest size 
categories of ponds but increased with pond size (Table 1, 
column F). To estimate the total number of ponds in the 
study area (Table 1, column H), we multiplied the total 
number of ponds in the NHD for the study area (Table 1, 
column G) by the ratio of the corrected number of ponds 
to the number of ponds in the NHD (Table 1, column F). 

Estimation of the abundance of permanent and 
temporary ponds 

We determined whether ponds were permanent or 
temporary by visually inspecting aerial imagery from the 
18 selected quarter quadrangles during drought-free 
conditions and comparing them to aerial images taken 
during drought conditions. We classified ponds that 
contained water during both drought-free and drought 
conditions as permanent (Table 2, column B). Ponds 
containing water during drought-free conditions but dry 

during drought conditions were classified as temporary 
(Table 2, column C). To estimate the abundance of 
permanent and temporary ponds in the study area (Table 
2, columns F and G, respectively), we multiplied the 
proportion of permanent (Table 2, column D) and 
temporary ponds (Table 2, column E) in 18 quarter 
quadrangles by our estimate of the number of ponds 
within the study area (Table 1, column H). All data were 
processed using Esri ArcMap 10.1 (Build 3035). 

Results and discussion

After correcting the NHD dataset, we estimated 577 654 
ponds ≤1 ha were in our study area, 6% more than the 
545 950 ponds included in the NHD. We estimated that 
the density of ponds in our study area was 2.52 ponds/
km2, considerably higher than the 0.64 lentic waterbodies 
per km2 estimated for the South-Central Prairies and 
Southern Texas Plains subareas of the Great Plains 
(McDonald et al. 2012) but less than the maximum 
estimate of >5 ponds/km2 for the conterminous United 
States (Renwick et al. 2006). 

Ponds with surface areas from 0.005 to 0.1 ha were the 
numerically dominant size class of pond in the study area, 
and the number of ponds declined with increasing size (Fig. 
3). The distribution of farm pond sizes followed a power 
law, as found in previous studies of lakes, ponds, and im-
poundments (reviewed in Downing et al. 2006; Fig. 3).  

 Quarter Quadrangle Analysis (B through F) Study Area Analysis (G and H)

A. 
Size category
(ha)

B. 
Number of 

ponds observed 
in aerial 

images not in 
NHD 

C. 
Number of 
ponds in 
NHD not 

observed in 
aerial images

D. 
Number 
of ponds 
in NHD

E. 
Corrected 
number 
of Ponds

F.
Ratio of the 

corrected 
number of 

ponds to the 
number of 
ponds in 

NHD

G. 
Number of 

ponds in NHD 

H. 
Estimated 

total number 
of ponds

0.005–0.1 234 222 886 898 1.01 247 476 249 951
0.11–0.2 119 107 502 514 1.02 155 368 158 475
0.21–0.3 65 38 189 216 1.14 61 245 69 819
0.31–0.4 34 15 86 105 1.22 30 406 37 095
0.41–0.5 24 11 72 85 1.18 17 890 21 110
0.51–0.6 13 5 43 51 1.19 11 685 13 905
0.61–0.7 8 5 29 32 1.10 8079 8887
0.71–0.8 12 5 24 31 1.29 5926 7645
0.81–0.9 5 2 11 14 1.27 4548 5776
0.91–1.0 6 1 10 15 1.50 3327 4991

Total      545 950 577 654

Table 1. Correction of the National Hydrology Dataset (NHD) and estimation of total number of ponds in the study area.represent present-day conditions. Ponds are dynamic 
features of agricultural areas, both added and removed 
from the landscape over time (Renwick et al. 2006), 
which could lead to errors in the NHD. For example, 
some ponds may not be included in the NHD because 
they were recently constructed or were initially missed 
due to human error, whereas other ponds included in the 
NHD dataset may no longer be present on the landscape. 
Therefore, in our analysis we checked and corrected the 
NHD using visual inspection of individual ponds in 
aerial images from the USDA National Agriculture 
Imagery Program (NAIP) database. Specifically, we 
randomly subsampled 18 sites within our study area and 
visually analyzed aerial images of ponds during drought-
free conditions to assess the completeness of the NHD 
and correct the dataset for ponds added and removed 
from the landscape. To identify permanent and temporary 
ponds, we analyzed aerial images of ponds from the 
same 18 subsampling sites during drought-free and 
drought conditions. We used the proportion of permanent 
and temporary ponds in our 18 subsampling sites along 
with the corrected NHD to estimate the abundance of 
permanent and temporary ponds across our study area. 
This study focused on ponds with surface areas ranging 
from 0.005 to 1 ha. Ponds >1 ha occurred at relatively 
low densities and were not abundant enough to be 
included in our analyses. 

Identification of subsampling sites 

To select our subsampling sites, we first identified 
candidate USGS quarter quadrangles suitable for visual 
inspection of individual ponds. Quarter quadrangles are 
derived from USGS 7.5 minute quadrangle maps (USGS 
2002) divided into quarters. We used data from the US 
Drought Monitor (http://droughtmonitor.unl.edu/
MapsAndData/GISData.aspx) to identify all USGS 
quarter quadrangles in the study area that experienced 
both drought-free and “D3 Extreme Drought” conditions 
during 2003–2013 (hereafter referred to as drought-free 
and drought conditions, respectively). We then searched 
the NAIP Imagery Database (http://datagateway.nrcs.
usda.gov/) for 1–2 m resolution aerial images of the 
previously identified quarter quadrangles taken during 
drought-free and drought conditions (open pink 
rectangles in Fig. 2). When multiple NAIP images were 
available, we randomly selected a single year for 
analysis. Because the region varies in temperature and 
precipitation, we randomly selected 4–5 quarter 
quadrangles from the NW, NE, SW, and SE subareas of 
our study area for further study (18 quarter quadrangles 
total, solid black rectangles in Fig. 2).

Correction of NHD dataset and estimation of 
total number of ponds in the study area

We began by visually identifying all ponds in the aerial 
images of the 18 selected quarter quadrangles during 
drought-free conditions. We then compared these ponds to 
ponds in the NHD to assess 2 types of errors in the NHD: 
(1) ponds not included in the NHD that were observed in 
the aerial image (e.g., ponds added to the landscape) or (2) 
ponds included in the NHD that were not observed in the 
aerial images (e.g., ponds removed from the landscape). If 
a pond observed in the aerial image was not present in the 
NHD, we incorporated it into our database (Table 1, 
column B). If a pond was present in the NHD but was not 
observed in the aerial image, we removed it from the 
database (Table 1, column C). Finally, for the 18 quarter 
quadrangles, we corrected the number of ponds in the 
NHD (Table 1, column D) by adding the number of ponds 
observed in aerial images that were not included in the 
NHD (Table 1, column B) and subtracting the number of 
ponds in the NHD that were not observed in the aerial 

Fig. 2. Open pink rectangles represent USGS quarter quadrangles 
that experienced both drought-free and “D3 Extreme Drought” 
conditions during 2003–2013 and for which USDA National 
Agriculture Imagery Program 1–2 m resolution aerial images were 
available. Solid black rectangles represent quarter quadrangles 
selected for visual analysis in the NW, NE, SW, and SE subareas of 
our study area (demarcated by dashed lines).
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Batzer and Baldwin 2012). In our study, we demonstrated 
that both permanent and temporary farm ponds are 
abundant. Because permanent and temporary ponds have 
different physicochemical properties and ecological 
communities (Williams 1997, Drenner et al. 2009, 
Henderson et al. 2012), assessments of regional biogeo-
chemical processes and biodiversity in the Great Plains 
must consider both types of ecosystems. Many studies 
have shown that constructed systems may be important 
contributors to regional biodiversity (Knutson et al. 2004, 
Abellán et al. 2006, Brainwood and Burgin 2006, Failey et 
al. 2007, Bilton et al. 2009, Campbell et al. 2009, Drenner 
et al. 2009, Sebastián-González et al. 2010, Casas et al. 
2012).

In conclusion, we used a novel method of assessing 
ponds during drought-free and drought conditions to 
provide the first estimate of permanent and temporary 
pond abundance in the southeastern Great Plains. Our 
analysis represents a snapshot of permanent and temporary 
ponds in the southeastern Great Plains. The ratio of 
permanent to temporary ponds will likely change in the 
future as climate change increases evaporation and 
reduces precipitation and surface runoff in this area of the 
Great Plains (Karl et al. 2009, Shafer et al. 2014). Our 
study provides important baseline data to assess future 
change in the number of permanent and temporary ponds 
in the region and their potential roles in biogeochemical 
cycling and their contribution to biodiversity in the Great 
Plains.  
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